
Altreonic NV - Gemeentestraat 61A b1, B-3210 Linden, Belgium.	

info.request@altreonic.com, www.altreonic.com, tel. +32 16 20 20 59

Safe Virtual Machine for C	

The ultra small target independent Virtual Machine	

Dynamic code in C for deeply embedded and distributed systems

Altreonic is breaking new grounds by complementing its OpenComRTOS with the capability to run
processor independent code on any node in a networked system. The Safe Virtual Machine (SVM) was
generated from a formal description and requires less than 3 Kibytes per task for code and about 10-15
Kibytes for data. As the native OpenComRTOS also only requires 5-15 Kibytes, this capability opens
new possibilities for memory and power constrained embedded systems.	

!
Capabilities:	

• Loading and running code on a remote node without halting it 	

• Dynamic code loading at runtime 	

• Dynamic task migration at runtime 	

• Transparent communication with native OpenComRTOS tasks on the same or on remote nodes 	

• Safe execution: SafeVM tasks cannot violate memory boundaries. 	

• The mechanism can be applied to other binary targets. 	

 
Future releases will also support calling native functions for maximum performance and direct
execution of the binary images on the target processor. 	

 
Applications: 	

• Remote diagnostics. 	

• Fail safe and fault tolerant control. 	

• Processor independent programming. 	

 
Thanks to the use of OpenComRTOS, SafeVM tasks can operate system wide across all nodes in the
network. The user can also put several SafeVM tasks on the same node. The natively running
OpenComRTOS itself acts as a virtual machine for the SVM tasks, isolating them from the underlying
hardware details while providing full access. 	

 
How it works:  
The SafeVM capability is provided by a SafeVM
task manager that can start and stop the SVM task,
monitor their status and interact with the SafeVM
host task. The latter is composed of a safe VM
execution module and the actual SafeVM task. The
SafeVM task it- self interacts with the rest of the
node and the net- work through pre-compiled
services, including the standard OpenComRTOS
services.	

Safe Virtual Machine for C	

From Deep Space to Deep Sea

Available SafeVM task services: 	

SVM_LoadTask  
// loads the SVM task in the SVM workspace	

SVM_StartTask	

// starts the SVM task	

SVM_StopTask	

// Stops the SVM task	

SVM_ClearTask	

// Clears the workspace memory of the SVM //
Equivalent to unloading the SVM task	

SVM_GetErrorInfo	

// Returns the last error code	

SVM_GetState	

// Returns the current state of the SVM	

OpenComRTOS services	

OpenComRTOS services, callable by the SVM
task, operate transparently across a networked or
multicore systems.  
Services include: preemptive priority based task
scheduling, events, counting semaphores, fifos,
resource locks with support for priority
inheritance, packet pools, memory pools,
DataEvent, BlackBoard, MBQ. See the
OpenComRTOS datasheets and manuals for
more details.  
The SVM task can be written and compiled using
all features of ANSI-C, including libraries.	

Relative performance	

Measured on ARM Cortex M3:	

Program code for SVM  
(manager + execution module): < 3 KiBytes	

Relative RTOS performance:  
Example semaphore loop with one task being a
SVM_Task: about 7x slower.	

Computational performance:  
depends on application code.

Example program:	

This example first loads a first SVM Task on the
node, waits until it stops, and then up- loads a new
SVM Task to the node and starts it.	

#include <SVM_HostService/
 SVM_HostClient.h>
void Task1_entry(L1_TaskArguments
Args)
{
FILE *fo;
SVM_STATE state;
// TASK1 - binary file with image
fo = fopen(SVM_TASK1,"r");
assert(fo!=NULL);
// buffer for storing program
L1_UINT32 buffer[128];
L1_UINT32 n = fread(buffer,
 sizeof(L1_UINT32),
 128,
 fo);
assert(n!=0);
// send task to SVM task
SVM_LoadTask(SVM_Manager,
 buffer,
 n*4,
 5000);
// start task on the node
SVM_StartTask(SVM_Manager);
// wait until first task stops
do {

 SVM_GetState(SVM,&state);
 if(state==VSP_VM_ERROR)
 exit(1);
 }
while(state!=SVM_VM_STOPPED);
// Load second task
// SVM_TASK2 - binary file with image
 fo = fopen(SVM_TASK2,"r");
assert(fo!=NULL);
n = fread(buffer,
 sizeof(L1_UINT32),
 128, 
 fo);
assert(n!=0);
SVM_LoadTask(SVM_Manager,  
 buffer, 
 n*4, 
 5000);

